A Novel Synthetic Compound 3-Amino-3-(4-Fluoro-Phenyl)-1H-Quinoline-2,4-Dione (KR22332) Exerts a Radioprotective Effect via the Inhibition of Mitochondrial Dysfunction and Generation of Reactive Oxygen Species

نویسندگان

  • Seung Jae Baek
  • Jae Won Chang
  • Keun Hyung Park
  • Garp Yeol Yang
  • Hye Sook Hwang
  • Yoon Woo Koh
  • Young-Sik Jung
  • Chul-Ho Kim
چکیده

PURPOSE Acute side effects of radiation such as oral mucositis are observed in most patients. Although several potential radioprotective agents have been proposed, no effective agent has yet been identified. In this study, we investigated the effectiveness of synthetic compound 3-amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR22332) as a radioprotective agent. MATERIALS AND METHODS Cell viability, apoptosis, the generation of reactive oxygen species (ROS), mitochondrial membrane potential changes, and changes in apoptosis-related signaling were examined in human keratinocyte (HaCaT). RESULTS KR22332 inhibited irradiation-induced apoptosis and intracellular ROS generation, and it markedly attenuated the changes in mitochondrial membrane potential in primary human keratinocytes. Moreover, KR22332 significantly reduced the protein expression levels of ataxia telangiectasia mutated protein, p53, and tumor necrosis factor (TNF)-α compared to significant increases observed after radiation treatment. CONCLUSION KR22332 significantly inhibited radiation-induced apoptosis in human keratinocytes in vitro, indicating that it might be a safe and effective treatment for the prevention of radiation-induced mucositis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Cytotoxicity Study of New Cyclopenta[b] quinoline-1,8-dione Derivatives

DNA intercalators belong to aromatic heterocyclic compounds interacting reversibly with DNA. These compounds have been used extremely as cytotoxic agents against cancer. In this study, the synthesis and biological activity of some novel derivatives of cyclopenta [b] quinoline-1, 8-dione as new intercalating agent were investigated. Twenty novel derivatives of cyclopenta [b] quinoline-1, 8-dione...

متن کامل

Synthesis and Cytotoxicity Study of New Cyclopenta[b] quinoline-1,8-dione Derivatives

DNA intercalators belong to aromatic heterocyclic compounds interacting reversibly with DNA. These compounds have been used extremely as cytotoxic agents against cancer. In this study, the synthesis and biological activity of some novel derivatives of cyclopenta [b] quinoline-1, 8-dione as new intercalating agent were investigated. Twenty novel derivatives of cyclopenta [b] quinoline-1, 8-dione...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners.

4-Methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione (oltipraz), a prototype drug candidate containing a 1,2-dithiole-3-thione moiety, has been widely studied as a cancer chemopreventive agent. Oltipraz and other novel 1,2-dithiole-3-thione congeners have the capability to prevent insulin resistance via AMP-activated protein kinase (AMPK) activation. Arachidonic acid (AA, a proinflammatory fatty acid...

متن کامل

مروری بر نقش محافظتی ترکیبات پلی فنلی (رسوراترول، کوئرسیتین و کورکومین) بر عملکرد میتوکندری قلب

Mitochondria plays a major role in maintaining homeostasis of heart cells. Mitochondria produce ATP and is the main intracellular source of reactive oxygen species (ROS) which can cause oxidative damage. Free oxygen radicals and oxidative damage are associated with cardiovascular pathology. Antioxidant defense can play an essential role in preventing oxidative damage by controlling free oxygen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2014